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Positron emission tomography (PET) is an imaging
technology that measures the concentration, distribu-
tion, and pharmacokinetics of radiotracers—molecules

that are labeled with short-lived positron-emitting variants
(i.e., radioisotopes) of chemical elements naturally found in
the body. These radioisotopes can be attached to compounds
involved in normal brain function and then injected into the
blood stream. For example, radioactive carbon-11 (11C) and flu-
orine-18 (18F) can be used to label the sugar glucose, which is
the brain’s only energy source, and oxygen-15 (15O) can be
used to label water molecules, which can help measure blood
flow in the brain. The signals emitted by these radiotracers
then are measured using specific detectors. For example, for
brain measurements, detectors arranged in a ring around the
subject’s head collect the data, which are then transferred to
a computer and converted into a three-dimensional image 
of the brain. Because these measurements are noninvasive,
the technology allows researchers to track biochemical trans-
formations in the living human and animal body. PET is a
highly sensitive method; it measures radioisotope concentra-
tions in the nanomolar to picomolar range (10-9 to 10-12 M)
(Schmidt 2002). Therefore, the technique can be used to label
compounds that are of pharmacological and physiological
relevance. These radiotracers then can be used to probe
neurochemical and metabolic processes at the relevant physi-
ological concentrations without perturbing the system that is
measured. 

To exert their effects on the brain, alcohol and other
drugs (AODs) act on signaling molecules (i.e., neurotrans-
mitters) in the brain as well as on the molecules on the
surface of neurons (i.e., receptors) with which the neuro-
transmitters interact. (For more information on nerve sig-
nal transmission, neurotransmitters, and their receptors,
see the article by Lovinger, pp. 196–214.) Specific com-
pounds that selectively bind to such receptors, to the
molecules that transport neurotransmitters back into cells,
and to the enzymes that are involved in the synthesis or
metabolism of neurotransmitters can be labeled for use as
PET radiotracers. As a result, PET can be used to assess
the metabolic and neurochemical actions of AODs and to
evaluate the consequences of chronic AOD use (Volkow et
al. 1997; Wang et al. 2000; Wong et al. 2003). Since its

inception, PET has been used extensively to study the
effects of AODs in human and nonhuman primates; how-
ever, the recent development of microPET technology has
expanded its applications to research in rodents. In addition,
increasing numbers of studies are using PET methodology
to assess the involvement of genetic variations in individual
genes (i.e., polymorphisms) in brain function and neuro-
chemistry. This article specifically summarizes the role of
PET as a tool for alcohol neuroscience research. The stud-
ies discussed are divided into those that assess the effects
of alcohol on brain function (i.e., brain metabolism and
cerebral blood flow) and those that assess its effects on
neurochemistry. 

PET Analyses of Brain Function

Indicators of brain function, such as cerebral blood flow, glu-
cose utilization, and oxygen consumption, are the most com-
mon signals detected in functional brain-imaging techniques.
These metabolic signals have been examined in a variety 
of disorders, primarily through the use of (18F)-fluoro-2-
deoxyglucose (FDG) as a radiotracer in PET imaging.
Thirty-two years after its introduction, FDG still is the most
widely used radiopharmaceutical for PET studies. This type
of PET imaging allows the noninvasive observation of glu-
cose utilization by different types of brain cells, including
neurons and supporting cells known as glial cells (Magistretti
and Pellerin 1996). In the brain, the sugar glucose is metabo-
lized to lactate, which is a preferred energy source for neu-
rons. Accordingly, glucose metabolism is a powerful indicator
of brain function. FDG–PET imaging has the potential to
detect very early brain dysfunction, even before neuropsycho-
logical testing yields abnormal results. In addition, the tech-
nique can be used to monitor treatment response and the
effects of possible therapeutic intervention against the disease. 

PET analyses using FDG to measure brain glucose
metabolism and radiolabeled water to measure cerebral
blood flow have been used to study the acute and chronic
effects of alcohol in nonalcoholic control subjects, alco-
holics, and people at risk of alcoholism (e.g., children of

PANAYOTIS K. THANOS, PH.D., is a staff scientist in the
Laboratory of Neuroimaging, National Institute on Alcohol
Abuse and Alcoholism (NIAAA), Bethesda, Maryland; scientist
in the Behavioral Neuropharmacology & Neuroimaging
Laboratory, Medical Department, Brookhaven National
Laboratory, Upton, New York; and an adjunct faculty member
in the Department of Psychology, State University of New York
Stony Brook, Stony Brook, New York.

GENE-JACK WANG, M.D., is a scientist at the. Medical
Department, Brookhaven National Laboratory, Upton, New York.

NORA D. VOLKOW, M.D., is chief of the Laboratory of
Neuroimaging, NIAAA, Bethesda, Maryland and director of
the National Institute on Drug Abuse.

 



234 Alcohol Research & Health

TECHNOLOGIES FROM THE FIELD

alcoholics). Other PET studies using FDG have examined
alcohol’s toxic effects on neurons (i.e., neurotoxicity) or
gender-specific responses to alcohol. The findings include
the following: 

• Acute alcohol administration markedly reduced brain glu-
cose metabolism throughout the whole brain, including
the prefrontal cortex (Volkow et al. 2006) (see figure 1),
whereas it increases cerebral blood flow in some brain regions,
such as the prefrontal cortex (Volkow et al. 2007). In
addition, it was shown that alcoholics displayed both a
prefrontal modulation (i.e., reduced brain glucose) in the
activity of cells using the neurotransmitter dopamine,
combined with a profound decrease in dopamine activity
(Volkow et al. 2007). These data suggested that interven-
tions to restore prefrontal regulation and the dopamine
deficit could be therapeutically beneficial in alcoholics
(Volkow et al. 2007). Moreover, normally, brain metabolism
and cerebral blood flow are coupled—that is, areas that
show high brain metabolism also exhibit high blood flow
and vice versa. Thus, these findings also suggest that alco-
hol dissociates this metabolic flow coupling. 

• A recent FDG–PET study demonstrated abnormally low
function of a brain region called the thalamus, which pro-
cesses and relays information from other brain regions, in
alcoholics suffering from acute alcohol-related hallucina-
tions (Soyka et al. 2005). 

• Alcoholics and normal subjects respond differently to an
acute alcohol challenge, with the alcoholics showing a
smaller behavioral response but larger decrease in brain
metabolism than normal subjects (Volkow et al. 1993). 

• Regional brain metabolic changes in response to treatment
with the benzodiazepine medication lorazepam, which,
like alcohol, enhances the activity of the neurotransmitter
γ-aminobutyric acid (GABA), differed between alcoholic
and control subjects. The findings likely indicate altered
function of a certain type of GABA receptor (i.e., the
GABA–BZ receptor) in alcoholics (Volkow et al. 1995).
Indeed, the pattern of regional brain metabolic decrements
seen with acute alcohol administration is similar to that
observed after acute administration of lorazepam in healthy
people, supporting the hypothesis that alcohol and benzo-
diazepines have a common molecular target for some
metabolic effects (Wang et al. 2000).

• Studies measuring brain glucose metabolism or cerebral
blood flow documented reduced activity in frontal and
parietal cortical regions in alcoholics. This observation is
consistent with findings from neuropsychological studies
showing that alcoholics have deficits in executive function
and attention, which are controlled by these brain areas.
Overall, these studies strongly support the concept that
alcoholism is associated with damage to the frontal and
parietal lobes. 

• Several studies have used imaging to probe the recovery
of brain function after alcohol withdrawal. These studies
found that the alcohol-related decreases in brain glucose
metabolism partially recover in abstinent alcoholics, par-
ticularly during the first 16 to 30 days after withdrawal
(Volkow et al. 1994).  

Imaging studies also have addressed the influence of
gender on the effects of alcoholism on the brain. It gener-
ally is believed that women are more vulnerable to alco-
hol’s toxic effects than men. However, whereas male alco-
holics have consistently shown reductions in brain glucose
metabolism relative to control subjects, a PET study using
18FDG in 10 recently detoxified female alcoholics reported
no differences between alcoholics and control females
(Wang et al. 1998). These results do not support the assump-
tion that alcohol has greater toxic effects on the female brain,
at least with respect to regional brain glucose metabolism.
However, it should be noted that the severity of alcohol use 
in these female alcoholics was less than that of the male
alcoholics previously investigated in PET studies. Therefore,
studies in male subjects with moderately severe alcoholism are
required to confirm gender differences in sensitivity to alco-
hol’s effects on brain metabolism.

PET Analyses of Neurotransmitters and
Receptor Binding

PET imaging also has been an effective tool in examining
neurotransmitter systems associated with alcohol abuse and
alcoholism (for a review of the various neurotransmitter sys-
tems affected by alcohol, see Koob 2003; Koob and Le Moal
2008). PET studies have shown that several neurotransmit-
ters appear to mediate alcohol’s reinforcing and addictive
effects (Wang et al. 2000). Of these, dopamine is believed to
play perhaps the most important role in mediating alcohol’s
reinforcing effects by acting on a brain circuit called the
mesolimbic dopamine system1 (Fowler and Volkow 1998).
Researchers have used a plethora of radiolabeled compounds
to examine various components of the dopamine system
using PET analyses, including the following: 

• [11C]m-tyrosine, a radiolabeled variant of the amino 
acid tyrosine, which is the starting material for dopamine
synthesis;

• [18F]DOPA, a radiolabeled variant of a compound
known as 3,4-dihydroxy-L-phenylalanine (L-DOPA),
which is an intermediate product in dopamine synthesis;

• A molecule called [11C]DTBZ (dihydroytetrabenzine),
which helps measure the activity of the vesicular monoamine
transporter (VMAT)—a transport protein that helps

1 This brain circuit primarily involves two brain regions called the ventral tegmental area
(VTA) and the nucleus accumbens (NAc). It plays a central role in reward, motivation,
and reinforcement. Its activity also is controlled by certain areas of the prefrontal cortex.
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transport dopamine and other signaling molecules into
the vesicles in which they are stored in the signal-emitting
(i.e., presynaptic) neuron; 

• [11C]cocaine, which helps measure the activity of the
dopamine transporter (DAT) that shuttles released
dopamine back into the presynaptic cells; 

• A compound called [11C]SCH23390 that helps deter-
mine the activity of a certain dopamine receptor, the D1
dopamine receptor (D1R); and

• A molecule called [11C]raclopride, which helps measure
the activity of another dopamine receptor, the D2
dopamine receptor (D2R).

PET imaging studies, as well as postmortem studies
of alcoholic subjects, have indicated that D2R levels may
be involved with alcohol addiction, because the levels of
these receptors were reduced in the striatum of the brains
of alcoholic subjects (Heinz et al. 2004; Volkow et al. 1996).
Additional PET analyses using [11C]raclopride demonstrat-
ed that higher D2R availability in nonalcoholic members
of alcoholic families may protect these individuals against
alcoholism (Volkow et al. 2006). The data also supported
the notion that the low D2R levels observed in alcoholics
may reflect the effects of chronic alcohol exposures.

Other PET studies have used [11C]raclopride to assess
changes in dopamine induced by stimulant drugs as a
measure of the reactivity of dopamine-releasing cells. This
approach is based on the fact that [11C]raclopride competes
for binding to D2 receptors with endogenous dopamine—

that is, the more endogenous dopamine is released by the
neurons, the less [11C]raclopride can bind to the receptor
and vice versa. Thus, changes in specific [11C]raclopride
binding that occur after stimulant administration reflect
the relative increases in dopamine induced by the drug.
Several studies have revealed a decrease in dopamine release
in alcoholic subjects, particularly in the ventral striatum
(Martinez et al. 2005; Volkow et al. 2007). In contrast,
clinical studies comparing people with a positive family
history for alcoholism and people without such a family
history did not show differences between the two groups
in stimulant-induced dopamine increases in the striatum.
These data suggest that the decreased dopamine release in
alcoholics is caused by chronic alcohol exposure (Monro
et al. 2006). The investigators postulated that the decreased
reactivity of the mesolimbic dopamine system in alcoholics
could put them at risk of consuming large amounts of alco-
hol to compensate for deficiencies in this reward pathway.

Investigators also have conducted PET studies using
multiple tracers simultaneously to study the relationship
between the changes in dopamine activity (as assessed
with [11C]raclopride) and brain glucose metabolism in the
prefrontal cortex (as measured with FDG). These studies
demonstrated a negative association between brain glucose
metabolism in prefrontal cortical regions (i.e., cingulated
gyrus, dorsolateral cortex, and orbitofrontal cortex) and
changes in dopamine levels in the striatum (which also
contains the nucleus accumbens) of control subjects. Thus,
the higher the metabolism in the prefrontal region the
lower the changes in dopamine levels. In alcoholic sub-
jects, in contrast, the activity in the prefrontal cortical
regions was not correlated with dopamine changes in 

the striatum (Volkow et al. 2007).
These findings suggest that in alcoholics
the normal regulation of dopamine cell
activity by signals from the prefrontal
cortex is disrupted; thus, the decreased
dopamine cell activity in alcoholics
may represent abnormal prefrontal 
regulation of the mesolimbic
dopamine system. 

Another study measured the activ-
ity of the vesicular monoamine trans-
porters in alcoholics. This study, which
used a radiotracer specific for one type
of these transporters (i.e., [11C]DTB2),
revealed that the levels of this trans-
porter were reduced in the striatum,
suggesting that the damaging effects of
severe chronic alcoholism on the cen-
tral nervous system are more extensive
than previously considered (Gilman et
al. 1998).

PET imaging studies also have
been used to examine the role of neuro-
transmitters known as endogenous opi-
oids in alcohol dependence. Studies

Figure 1 Brain activity during alcohol intoxication. Alcohol drinking markedly
reduces brain metabolism. 
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using a radiolabeled synthetic opioid pain reliever,
[11C]carfentanil, showed that the severity of alcohol craving
correlated with an increase in a certain type of opiate recep-
tor (i.e., the µ-opiate receptors) in the ventral striatum
and, particularly, the nucleus accumbens (Heinz et al.
2005). These findings point to a neuronal correlate of the
alcohol craving observed in abstinent alcoholic patients. 

Finally, PET analyses have helped examine the neuro-
chemistry underlying the relationship between alcoholism
and aggression and, more specifically, whether signal trans-
mission mediated by the neurotransmitter serotonin con-
tributes to this relationship (Brown et al. 2007). The inves-
tigators evaluated the density of the serotonin transporter in
alcoholic patients who were assessed for aggressive charac-
teristics. The results showed that none of the clinical mea-
sures used, including measures of aggression, correlated
with serotonin transporter binding in the alcoholic subjects. 

Future Directions

The studies reviewed here reflect the potential of PET as a
tool to investigate the alcoholic brain. However, there are
additional opportunities for using this technology to investi-
gate the neural underpinnings of alcoholism. For example,
PET can be applied to examine the consequences of genetic
variations (i.e., polymorphisms), gene modifications, or stem
cell procedures on regional brain function in alcoholics. 

Other studies have demonstrated the feasibility of
using PET to investigate the role of genes in the rodent
brain. This development has extended the usefulness of
PET in elucidating the role of genes in brain function,
aging, and adaptations to environmental and pharmaco-
logic interventions for alcoholism. Technologies to com-
pletely disrupt (i.e., “knock out”) or newly introduce (i.e.,
“knock in”) certain genes in mice have been particularly
valuable in elucidating the role of genes and the proteins
they encode in normal and pathological behaviors (Avale
et al. 2004; Gainetdinov and Caron 2000; Gainetdinov 
et al. 2001). Other technological advances, such as small-
animal PET imaging and microPET technology have
rapidly progressed since their introduction (Cherry 1997)
and today offer PET images with a resolution of just
under 2 mm. Furthermore, the combination of microPET
images with images of the same animals obtained using
other technologies (e.g., high-field magnetic resonance
imaging) has allowed researchers to extend the use of PET
imaging studies to rodent models of psychiatric disease
(Ding et al. 2004; Rodriguez-Gomez et al. 2007; Thanos
et al. 2002, 2008a,b,c,d). Thus, microPET has become an
effective in vivo imaging tool for noninvasively studying
rodent models of alcohol abuse.  n
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